
TLO02 

Multi-Criteria Spatial Optimisation of Christchurch’s Urban 

Development 

S. W. Archie and J. N. Fleming 

Final Year Projects, 2020 

Dept. of Civil and Natural Resources Engineering 

University of Canterbury 

Project supervisor: T. M. Logan 

Keywords: Spatial planning, Urban optimisation, Climate risks, Sustainability objectives, Planning synergies & conflicts  

ABSTRACT 

Currently, local authorities are unequipped to quantitatively assess areas for future development in a manner that can 

consider multiple planning objectives. In this paper, we continue the development of a multi-criteria spatial optimisation 

framework that uses a genetic algorithm. As a case study, the framework is applied to Ōtautahi Christchurch, New 

Zealand, to identify areas of priority for urban intensification. This will help aid decision-makers where to guide future 

growth whilst taking into account multiple hazard adaption and sustainability objectives and their trade-offs and 

synergies. We observe such synergies and trade-offs between the selected objective functions, indicating that urban 

planners can both take advantage of co-benefits, but also must make compromises, between criteria when choosing areas 

for development. The algorithm was observed to not entirely neglect unfit development plans; however, it does converge 

on superior regions when averaging the best spatial plans of the final generation. These maps could guide urban planners 

by providing evidence for decisions when choosing regions for future strategic growth. 

 

1. INTRODUCTION 

Cities are widely recognised as a solution to many of 

societies challenges, but they are not without problems 

(Lehmann 2019; OECD 2010; United Nations 2019). 

Issues arise around where cities are built and how they 

are planned. Urban planners are faced with the complex 

task of assessing areas for future development. However, 

through the careful design of cities, they can develop 

sustainable and resilient urban environments. In the face 

of projected increases in the frequency and intensity of 

extreme events, it is widely accepted that urban areas 

must focus on adapting to exacerbated natural (and other) 

hazards to enhance sustainability, quality of life and 

resilience.  

Urban planners measure the quality of spatial 

development plans by creating objectives they wish to 

fulfil. Objectives that aim to mitigate or adapt to climate-

related issues are termed sustainability planning 

objectives. However, attempting to target one 

sustainability objective exclusively can undermine and 

cause conflicts among the other objectives (Caparros-

Midwood et al. 2019; Floater et al. 2016; Lehmann 2019; 

Meerow 2019; Sethi et al. 2018; Smith 2013; Viguié and 

Hallegatte 2012). Conversely, there is potential for 

objectives to have co-benefits where induced increases in 

one objective result in a secondary benefit of another 

objective. For example, reducing vehicle use will have 

supplementary benefits on public health and greenhouse 

gas emissions (Floater et al. 2016). This presents urban 

planners with a conundrum, where a multi-dimensional 

spatial optimisation problem is encountered to balance 

potential compromises and utilise co-benefits between 

risk and other sustainability objectives (Caparros-

Midwood et al. 2019).  

By 2038, it is predicted that an additional 600,000 

dwellings will be required to house Aotearoa New 

Zealand residents, with 50,000 of these dwellings being 

needed in Ōtautahi Christchurch (Stats NZ 2013; Stats 

NZ 2018). The Ministry for the Environment (2020) 

requires local authorities to prepare a Future 

Development Strategy (FDS) as part of the National 

Policy Statement on Urban Development (NPS-UD). The 

NPS-UD focuses on policies for strategic growth 

planning through evidence-based decision-making 

methods in order to form well-functioning environments. 

Thus, urban planners have the responsibility to make 

design decisions for urban areas for these future 

populations. 

According to the 2018 Census (Stats NZ 2018), 99% of 

Christchurch is occupied by low-density private housing 

(Figure 1) of which is not sustainably densified, as 

defined by (Lehmann 2016). Therefore, the first question 

that arises is how planners can implement an FDS to 

guide Christchurch’s projected urban growth. Moreover, 

when applying qualitative criteria to fulfil the 

requirements of the NPS-UD, the more important 

question for planners is where to build next? 

To address that question, a novel multi-objective spatial 

optimisation framework was developed (Caparros-

Midwood 2016). This framework combined several 

objectives to identify urban areas for intensification in 

European cities (Caparros-Midwood 2016). Subsequent 

journal articles Caparros-Midwood et al. (2019) have 
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further refined the optimisation approach to efficiently 

search for urban development strategies that optimise the 

objective functions chosen. This framework is both 

critical to, and appropriate for addressing future 

intensification through quantitative-based decision-

making procedures, and covers the significant policies of 

the NPS-UD.  

We created a modified genetic algorithm multi-objective 

spatial optimisation model, developed initially by 

Caparros-Midwood et al. (2019), and applied it to 

Ōtautahi Christchurch, New Zealand. Christchurch City 

Council urban planners (and other stakeholders) will be 

able to identify a range of suitable areas for sustainable 

future development. This framework equips urban 

planners with an evidence-based method for their 

decisions that considers both the trade-offs and synergies 

between multiple planning objectives, to aid them in 

fulfilling their requirements under the NPS-UD. 

 
Figure 1. Proportions of existing urban densities of 

Christchurch in 2018, by statistical area, indicating 

where different transport methods can be supported as 

outlined by Chakrabarti (2013). A 3D interactive spatial 

map can be found at 

urutau.co.nz/research/spatial_optimization   

2. LITERATURE REVIEW 

An answer to the question of where to best build requires 

the choice of a good algorithm. Many variants of possible 

algorithmic approaches exist within the literature, and 

each methodology has limitations. For the algorithm to 

efficiently locate improved solutions, it is vital to choose 

a method that creates a vast range of spatial plans, each 

different from the last iteration. We chose a genetic 

algorithm because it is ideal based on its ability to escape 

converging on local optima (Caparros-Midwood 2016) 

whilst creating diverse development plans. Figure 2 

outlines the steps of the genetic algorithm implemented 

using the Python software language. We expand on this 

in the following sections. 

 
Figure 2. Computational flowchart of the genetic 

algorithm used to implement the multi-objectional 

spatial optimisation framework. (Modified from 

Caparros-Midwood et al., 2016). 

When designing sustainable and resilient urban 

environments, a careful choice of unique densities that 

are feasible and sustainable is needed. One particular 

study (Jasmax 2011) investigated the practicality of 

residential densification for the city of Auckland, New 

Zealand. A range of possible design solutions, from 42 to 

520 dwellings per hectare, were considered viable for the 

current Auckland market conditions. Several authors 

(Chakrabarti 2013; Ministry for the Environment 2005; 

Tauranga City Council 2018) promote a minimum 

threshold of approximately 40 dwellings per hectare to 

promote a viable public transportation network in cities, 

infrastructure cost savings and land economy gains. 

Lehmann (2016) argues that a more generous lower limit 

of 70 dwellings per hectare comprises a benchmark for 

authentic, sustainable development. Possible design 

solutions by Jasmax (2011) over 155 dwellings per 

hectare were comprised of high-rise apartment-style 

structures. Therefore, a maximum bound of 140 

dwellings per hectare was enforced to persevere the 

current character of neighbourhoods in Christchurch. 

Thus, the achievable sustainable design densities 

between 70 and 140 dwellings per hectare recommended 

by Jasmax (2011) were used. 

 

http://urutau.co.nz/research/spatial_optimization


TLO02 

It is important to choose appropriate objectives that are 

spatially quantified to represent the planning goals of 

Christchurch best. A review was conducted of the City 

Plan (Christchurch City Council 2016) and various 

reports (Christchurch City Council 2017; Christchurch 

City Council n.d.; Todd et al. 2017) to identify planning 

objectives and hazards implemented in the current urban 

planning context. From this investigation and the 

availability of data, the objectives implemented in our 

Christchurch case-study are as follows: 

 to minimise exposure to inundation from a 

tsunami resulting from a 1 in 2500-year 

earthquake event situated in South America 

 to minimise exposure to a 1 in 100-year coastal 

flooding surge in addition to increments of 

future sea-level rise 

 to minimise exposure to the risk of future river 

flooding for a 1 in 500-year event 

 to minimise liquefaction susceptibility 

 to minimise the distance of new development to 

key activity areas  

 to minimise the expansion of urban sprawl in 

rural zones.  

Further objectives can be prescribed in the framework for 

Christchurch, as well as other future case studies. 

However, for illustrative purposes, we believe the six 

objectives chosen are adequate to showcase the 

developed framework. 

 

The quantity of required dwellings for future generations 

is needed through projections under multiple scenarios. 

Three central forecasts follow low, medium and high 

growth due to differing rates of fertility, mortality and 

migration. It is argued by Stats NZ (2013) that the 

medium projection is best suited for assessing future 

dwelling required. In order to identify robust regions for 

development regardless of the scenario,  three alternative 

projections will be considered (ten, thirty, and fifty 

thousand dwellings) (Stats NZ 2013).  

3. METHODOLOGY 

3.1. Initialisation 

To enforce the genetic algorithm to allocate future 

dwellings to regions that can be intensified, constraints 

are applied to prevent uninhabited areas from being 

considered. The choice of regions to develop in 

Christchurch is based on statistical areas defined by the 

2018 Census (Stats NZ 2018), detailed at 

urutau.co.nz/research/spatial_optimization. The 

constraints imposed upon each statistical area in the 

genetic algorithm are: (i) Red Zones identified after the 

Canterbury Earthquake Sequence, (ii) public recreational 

parks and green spaces, and (iii) areas identified as 

specific purpose, transport or open space as per the 

District Plan. A further constraint was to ensure chosen 

statistical areas are contained within the urban extent 

boundary set by the District Plan.  

 

Creating a successful quantitative framework involves 

each statistical area to be evaluated against each of the 

six chosen objective functions. Each objective was 

parameterised from a spatial dataset into a function, as 

outlined at urutau.co.nz/research/spatial_optimization. 

User-defined weightings for each objective were then 

correspondingly multiplied by each objective function 

score to calculate an overall score of the statistical area 

(Eqn 1). 

 

𝐹 = ∑ (𝑤𝑖 × 𝑓𝑖)                                                               
𝑖

(1) 

where:  

F = Overall objective score for the statistical area 

w = User-defined weighting for an objective function 

f = Associated quantitative objective function score. 

 

An efficient method of retrieving these evaluations is 

required. Each modified statistical area was indexed with 

a unique integer to create a ‘look-up table’, which is 

called upon each iteration. This guarantees statistical 

areas that satisfy all constraints were selected by the 

algorithm, which eliminated the need for a penalty 

function. 

The creation of the initial spatial development plans is 

crucial to the success of optimisation problems. We 

chose to form initial plans by randomly selecting a 

statistical area and increasing its density to a randomly 

chosen feasible sustainable design density. This process 

continues until the number of dwellings in the spatial 

plan reaches the required amount needed for future 

development under the specified projection pathway, and 

the resulting set of plans is labelled parents0. Thus, each 

development plan, Di, is a collection of statistical areas 

(that are specific development locations) called di, with 

randomly added density. 

3.2. Iterator 

We iterate over successive generations to create diverse 

and unique spatial plans in order to evolve towards the 

optimum configuration. The algorithm runs for a user-

defined amount of iterations and takes the previous set of 

selected development plans (parentsg) and updates it to 

create a new set of development plans (parentsg+1) using 

evolutionary operators. 

3.3. Evolutionary Operators 

Evolutionary operators randomly alter individual 

development plans to create new ones, each with a 

slightly different selection and densification of statistical 

areas. The new set of childreng is generated through a 

modified mu-plus-lambda evolutionary strategy, 

implemented by the Distributed Evolutionary Algorithms 

in Python (DEAP) module. This produces a child by 

http://urutau.co.nz/research/spatial_optimization
http://urutau.co.nz/research/spatial_optimization
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probabilistically choosing one of three evolutionary 

methods until the number of children matches that of 

parentsg. Specifically, the algorithm is chosen to use a 2-

point cross-over operator, a mutation operator by 

shuffling attributes (di’s), or a cloning operator. For all 

three methods, the strategy implements a roulette 

selection procedure to select the required amount of Di’s 

from the set of parentsg before applying the evolutionary 

operator to the selected parent(s). The probabilities for 

crossing-over and mutating operators are assigned to be 

0.7 and 0.2, respectively, with the remaining 10% of 

children being created through cloning. This improves 

convergence on objectives whilst demonstrating more 

diverse solutions being generated Caparros‐Midwood et 

al. (2017). 

3.4. Constraints and Evaluation 

After a child is created through an evolutionary operator, 

each di is verified to be under the sustainability density 

threshold of 140 dwellings per hectare. If found to have 

exceeded the limit, then a new child is created to replace 

the unacceptable child.  

The critical requirement of finding optimal locations to 

densify is to rank the performance of each development 

plan. The approach undertaken was to use a weighted 

sum of all statistical areas identified for intensifying, as 

outlined in Equation 2. 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ (𝐹𝑖 × 𝑑𝑤𝑖)                                                
𝑖

(2) 

where:  

fitness = Objective score for the development plan 

F = Overall objective score for a statistical area 

dw = Associated dwellings to be added to a statistical 

area 

3.5. Selection 

In order to choose the individuals with the best fitnesses 

for the next iteration, a selection tool is used after 

constraint handling and evaluation. Several authors have 

discovered that the use of the Non-dominated Sorting 

Genetic Algorithm II (NSGA-II) process performs well 

compared to other selection methods when utilised in 

optimisation problems (Cao et al. 2011; Jaeggi et al. 

2008; Zhang and Fujimura 2010). Hence, we used 

NSGA-II as the method of selection Deb et al. (2002). 

3.6. Multi-Objective Pareto-Optimal (MOPO) 

Set Maintenance 

Keeping a record of spatial plans that are shown to have 

the best fitness in at criteria is essential. It was chosen to 

implement a multi-objective Pareto-optimal (MOPO) 

sets that appends newly formed plans after every iteration 

that dominate in at least one objective score. 

3.7. Output 

To best visualise a range of optimal development plans 

and associated trade-offs in two objective functions 

requires the use of a scatter plot. This shall show the 

optimal points that are the best in one of the objectives, 

without negatively impacting on the other, i.e. Pareto-

optimal points. For example, in Figure 3, Point A lies on 

the “Pareto-front” as it cannot get any smaller in f1(X) 

without increasing in f2(X). This plot is used to indicate a 

range of robust future spatial development plans which 

show clear evidence of synergies & conflicts between 

risk and sustainability objectives.  

 
Figure 3. Demonstration of the Pareto front for two 

objectives. (Reproduced from Wang et al., 2015)    

Urban planners must consider the implications and 

necessary compromises of exclusively minimising one 

objective function. We chose to showcase this through a 

parallel coordinate plot, where each line represents the 

fittest spatial development plan discovered for each 

objective. 

To answer the central question of this research of where 

to build for future urban growth in Christchurch, 

displaying the locations of optimal development plans is 

essential. We chose to define the best Di’s ever created to 

be those that were simultaneously a part of the MOPO set 

and located on the Pareto-front of the last generation. 

Moreover, the statistical areas indicated to be more 

frequently densified on average are to show urban 

planners priority areas in order to guide and support 

evidence-based decisions for future urban growth.  

4. RESULTS AND DISCUSSION 

4.1. Observed relationships among objective 

functions 

Two main types of relationships exist between 

objectives, as depicted in Figure A1. The first is the 

interaction and simultaneous minimisation of at least two 

objective functions. For example, this synergy exists 

between the risk of tsunami inundation and coastal 

flooding for statistical areas in Christchurch (Figure A1). 

Figure 4 indicates that both hazards are co-located along 

the eastern coastline. When multiple objectives are 

synergistic, this supports mitigative action to occur as the 

relative cost is greatly reduced. As the algorithm seeks 

A 
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ideal locations, statistical areas inland are chosen due to 

this co-location to minimise multiple objectives 

simultaneously. 

 

 
Figure 4. Parametrized spatial dataset for each objective 

function of the Ōtautahi Christchurch case study. A 

darker shade of red indicates that the statistical area has 

a high objective function score.                                                    

Approximately half of the objective pairs demonstrate a 

synergistic relationship that converges to the minimum in 

both objectives simultaneously. However, as expected 

for many pairs of objective functions, a clear Pareto-front 

of optimal spatial plans exists (Figure A1).  Similarly, 

when assessing the development plans that were superior 

in each objective function (the MOPO set), as depicted in 

Figure 5, there is significant variability among objective 

function scores for the optimal plans. Both results 

indicate that no development plan is capable of entirely 

minimising all objective functions simultaneously, but 

rather conflicts occur between objective functions. The 

existence of Pareto-fronts regrettably dismisses the 

notion that a single development plan can fully minimise 

all objective functions. The key to future urban 

densification for Christchurch based on the criteria and 

weightings chosen, therefore, lies with the awareness that 

there will be no one perfect answer to the question of 

where to build next, but rather a range of solutions along 

the Pareto-fronts should be considered. 

 

Due to the presence of both synergistic and conflicting 

relationships, decision-makers need to be aware of the 

potential for maladaptation. It can be tempting to choose 

a plan which minimises multiple objectives 

simultaneously. However, in doing so, other objectives 

may end up much higher and push the total fitness score 

above what it would be otherwise. This is evident when 

attempting to minimise the liquefaction objective 

exclusively (Figure 5), where an unintended increase in 

river flooding is produced. 

 
Figure 5. Performance of Pareto-optimal spatial plans 

that dominate in one objective across all objectives. 

(Parents = 1000, Generations = 200, Balanced 

weightings, High dwelling projection) 

4.2. Convergence 

Increasing the number of parents and generations further 

defines the Pareto-front; however, this comes at the cost 

of an extreme run-time. This imposes a new constraint 

upon the research: to evaluate the trade-off between the 

discovery of accurate solutions and the time taken to find 

them. Through running numerous simulations with 

varying ranges of both parameters, it was concluded that 

the optimal arrangement was to create 2500 parents and 

iterate for 400 generations to gather a precise Pareto-

front. 

As the initial development plans were constructed by 

randomisation of location, we noticed that all statistical 

areas were picked by at least one Di in parents0. However, 

at progressively larger numbers of iterations, statistical 

areas with notably bad scores are neglected for further 

use in successive iterations. This results in more 

densified development in certain areas that better achieve 

the objective functions. In this regard, the behaviour of 

the genetic algorithm is as intended and indicates the 

framework is successful at converging on superior 

development plans. This convergence, where some 

regions are discarded from all development plans, is not 

nearly as noticeable when more parents are used. This is 

believed to be due to more parents meaning each 

statistical area has a higher probability of still being 

selected after each generation. This indicates the genetic 

algorithm is not great at converging, as it still chooses 

almost every statistical area for development across all 

the parents at higher parent numbers. Multiple sources 

have found that seeding the algorithm with reasonable 

solutions during initialisation can lead to development 

plans converging on optimal solutions quicker due to 

using a biased starting position (Caparros-Midwood 

2016; Harik and Goldberg 2000; Keedwell and Khu 

2005).  

 

Although unfit locations are not entirely dismissed, the 

genetic algorithm can be seen in Figure 6 to converge on 
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particular regions. Sites that are darker in colour appear 

in a higher percentage of development plans that are in 

the MOPO set, meaning they are a common theme in 

development plans that have performed well. These 

statistical areas are, therefore, a good indication as to 

where urban planners should consider for intensify 

residential areas. 

 

 
Figure 6. Ranked Pareto-optimal development sites. 

Darker blue signifies where statistical areas appeared 

more often in the MOPO sets. (Parents = 1000, 

Generations = 200, Balanced weightings, High dwelling 

projection) 

4.3. Distinctive patterns of densification methods 

of the genetic algorithm 

Development plans from the final iteration shown to lie 

within the top 1% of the overall objective function score 

are overlaid on top of the current densities in 

Christchurch (Figure 7). This shows where the genetic 

algorithm converged that is ideal for urban 

intensification, given the chosen weightings. It indicates 

what Christchurch would spatially look like if the 

recommended urban areas were densified.  

 

 
Figure 7. Spatial variability of envisioned urban 

densities of Ōtautahi Christchurch, by statistical area, 

where the height and colour of the extruded statistical 

areas indicate relative urban density. (Parents = 1000, 

Generations = 200, Balanced weightings, High dwelling 

projection). A 3D interactive map can be found at 

urutau.co.nz/research/spatial_optimization  

5. CONCLUSION 

To assist urban planners to undertake a multi-objective 

evidence-based assessment, we set out to build a 

framework that addresses the question of where to build 

for future growth in cities. This paper presented a genetic 

algorithm to search for optimal spatial development plans 

in Christchurch whilst considering the trade-offs and 

synergies between multiple planning objectives. 

The framework relies upon several assumptions of 

parameter inputs to characterise future development. 

Despite these limitations, the methods proposed in this 

paper is credible at locating areas of cities to densify to 

accommodate future development sustainably. 

With the given illustrative criteria and weightings for 

Christchurch, our findings demonstrate that both 

synergies and trade-offs exist between objectives. These 

results indicate that Christchurch urban planners are 

faced with a range of optimal spatial plans, instead of one 

superior solution that completely satisfies all objectives. 

This leads us to believe that when collating a Future 

Design Strategy, an evidence-based approach to 

decision-making is necessary to address multiple 

objectives whilst ensuring maladaptive actions are not 

undertaken.  

 

Our findings highlight that the algorithm is not efficient 

at neglecting regions with poor fitnesses, as all statistical 

regions are shown to be developed on among the 

summation of all parents. However, it was discovered 

that when averaging a select sub-set of superior parents 

from the last generation, the algorithm converges on 

particular regions. Based on these preliminary results, it 

is in these statistical areas that we recommend urban 

planners to focus on developing and densifying for 

increased residential capacity. The recommendation of 

areas to densify shall serve as a guide for urban planners 

to base and support their choices for future urban growth 

in cities. More importantly, this framework is to be a tool 

for urban planners to utilise in order to make evidence-

based decisions for sustainable and resilient 

development, as required under the NPS-UD. 

6. FURTHER WORKS 

We have developed a framework that is suitable for any 

city based on geographic constraints and dwelling count 

data. Objective functions need to be written based on 

what objectives the user wants to achieve based on data 

availability; however, the rest is versatile. Currently, the 

framework considers six objectives, only one of which 

relates to a positive amenity. A further step is to include 

positive objectives, such as minimising the distance to 

schools, supermarkets and medical centres to design 

urban areas for quality of life measurements. 

 

As we use the best performing development plans of the 

genetic algorithm, a stability check is to be completed to 

http://urutau.co.nz/research/spatial_optimization
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ensure the statistical areas that are recommended for 

development each time is consistent. 
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Interactive maps, all figures created in the code and a 

database detailing the data used and where it was sourced 

from can be found at: 

urutau.co.nz/research/spatial_optimization

 

APPENDIX – PARETO PLOTS 

 
Figure A1. Scatter plot of every spatial development plan’s fitness in two competing objective functions analysed in the 

entirety of the genetic algorithm for the Ōtautahi Christchurch case study. Highlighted is the Pareto-optimal plans along 

the Pareto-front curve. (Parents = 1000, Generations = 200, Balanced weightings, High dwelling projection) 

http://urutau.co.nz/research/spatial_optimization

